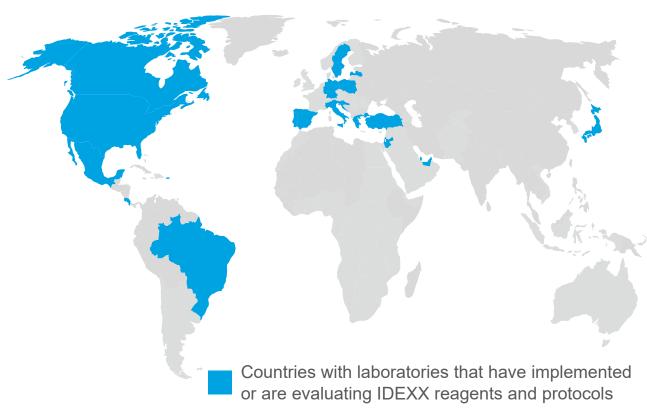

IDEXX has invested heavily in developing materials, protocols, and data to support wastewater surveillance

IDEXX Reagents

IDEXX Protocols



IDEXX Validation Data

- 100+ samples
- 15+ different wastewater treatment facilities
 - Geographically diverse
 - Different processes
- Testing over several months
- Multiple analysts
- Different material & reagent lots
- Varied lab equipment

IDEXX has experience implementing wastewater surveillance around the world with various types of laboratories

Customer Types

- Public Health Labs
- National Public Health
 Organizations
- Independent Laboratories
- Major contract laboratories
- Academic Research Labs
- Universities (on campus testing)
- Wastewater Utilities

Validation data allows labs with robust quality procedures to produce results that can be used for public health decisions

Validation

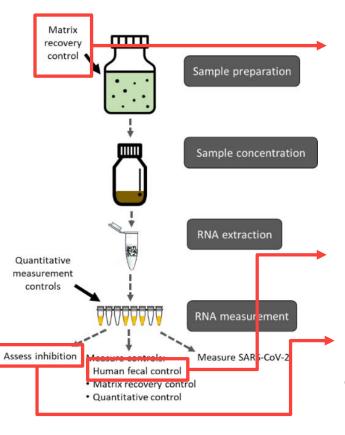
Lab Verification

Quality SOP

- Method developer characterizes performance under different conditions
 - Laboratory
 - Analyst
 - Type of sample
 - Geography
 - Etc...

- Laboratory testing confirms method performance compared to validation data
- Ongoing quality control procedures to ensure consistent performance

Because of the urgency of the pandemic, validation has often been limited in scope, which can lead to unintended consequences



IDEXX's experience with wastewater surveillance has demonstrated the importance of validation

Matrix Recovery

Fecal Normalization

Internal Control

Matrix Recovery Control

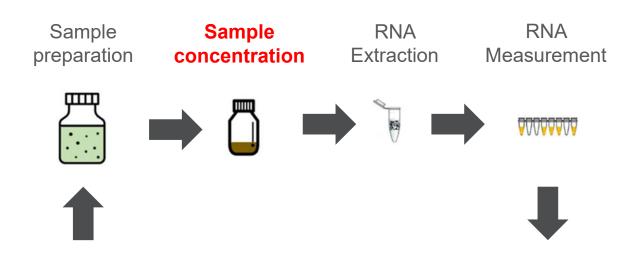
Importance of material choice

Human Fecal Control

Importance of probe design

Internal Control

Ability to assess inhibition



A matrix recovery control is critical for assessing yield loss during concentration

Matrix Recovery

Fecal Normalization

Internal Control

Sources of variation in concentration

- Relatedness of spike to SARS-CoV-2
- Inherent variability of wastewater matrix
- Variability of wastewater inputs (non-Human sources)
- Run-to-run variation

Measure remaining material to calculate

yield

Spike known amount of

exogenous material

IDEXX testing has demonstrated that certain materials perform differently in wastewater

Matrix Recovery

Fecal Normalization

Internal Contro

Collection Date	Site	Sample	BRSV Recovery %			
			Replicate		A.,	
			Α	В	Average	Higher variation between sites
Day 1	Α	260	69.3%	49.1%	59.2%	
Day 3		259	34.5%	38.7%	36.6%	
Day 1	В	275	65.7%	83.5%	74.6%	
Day 2	С	266	15.9%	15.1%	15.5%	
Day 4		262	22.7%	20.2%	21.5%	
Day 6		280	15.4%	14.6%	15.0%	
Day 2	D	274	33.6%	36.6%	35.1%	
Day 3		247	12.6%	13.4%	13.0%	
Day 5		283	30.9%	28.7%	29.8%	
Day 4	Е	264	32.2%	31.4%	31.8%	
Day 5	F	268	17.2%	15.1%	16.2%	
Day 6	G	281	25.5%	26.5%	26.0%	
			Average Recovery:		31.2%	

Recovery of Bovine Respiratory Syncytial Virus (BRSV) from wastewater using PEG-based concentration

- IDEXX data show BRSV can be used reliably as a matrix recovery control
- IDEXX also tested Bovine Coronavirus (BCoV)
- BCoV showed lower stability in wastewater and more variation in results
- However, BCoV is still widely used

A human fecal control can account for differences in relative human waste input over time

Matrix Recovery

Fecal Normalization

Internal Control

Without human fecal control

Human Inputs

Human Inputs
Rain Event
Industrial/Other Inputs

Higher concentration

Lower Concentration

Poor public health decisions

With human fecal control

Human Inputs

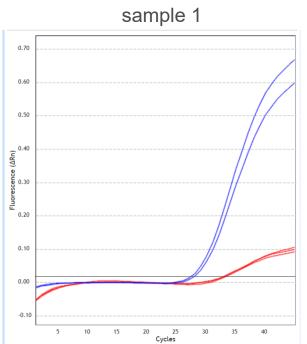
Human Inputs
Rain Event
Industrial/Other Inputs

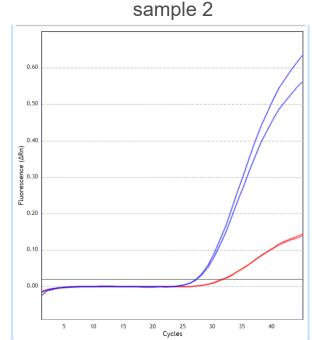
Human Fecal Normalization via PMMoV or crAssphage

Normalized concentration

Normalized concentration

Appropriate public health decisions




IDEXX testing demonstrated the importance of the original probe design

Matrix Recovery

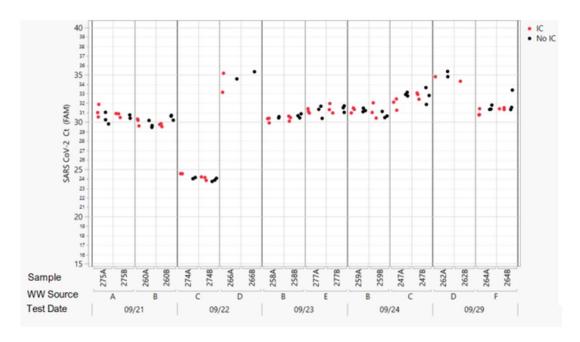
Fecal Normalization

Internal Control

MGB = blue

no MGB = red

- The original PMMoV probe design included a "minor groove binder," or MGB
- Some publications reported results for wastewater not using MGB
- IDEXX testing demonstrated that MGB is important for probe performance
- Methods need to be examined critically to evaluate risks


Internal controls must be validated to show no impact on quantification

Matrix Recovery

Fecal Normalization

Internal Control

- An internal control (IC) can indicate validity for each sample result, based on:
 - Inhibition potential
 - Successful purification and amplification
- The IC reaction must be multiplexed with the SARS-CoV-2 reaction
- There is a potential the IC reaction could affect quantification
- Validation is the only way to assess this risk

No impact of Multiplex Internal Control Reaction on SARS-CoV-2 Detection or Quantification

IDEXX Laboratories, Inc.

- Headquarters in Westbrook, Maine
- 700,000+ sq. ft. manufacturing and offices
- USDA licensed; ISO 9001, 14001, 17025 certified
- Offices in 17 countries, serving customers in 120 countries
- A S&P 500 and Nasdaq 100 company
- Worldwide market leader
- Specialist in water microbiology
- Accepted or approved in 50+ countries; over 100 different approvals/acceptances by more than 20 entities globally
- Helping protect water quality for an estimated
 2.5 billion people every day

IDEXX's experience in validated wastewater testing enabled rapid validation of wastewater surveillance methods

>20 years of wastewater expertise

- More than 1,500 testing systems used in wastewater facilities around the globe
- Methods approved by or included in ~20 regulatory bodies and standards

>10 years of real-time PCR expertise

- Creator of the RealPCR tests, with ~20 kits commercialized globally
- The OPTI SARS-CoV-2 RT-PCR Test Kit has received FDA emergency use authorization
- >1 million PCR tests performed each year

Questions

Brian-Swalla@idexx.com